System Capability Effects on Algorithms for Network
Bandwidth Measurement

Guojun Jin

Brian L. Tierney

Distributed Systems Department
Lawrence Berkeley National Laboratory
1 Cyclotron Road, Berkeley, CA 94720

g_jin@Ilbl.gov

ABSTRACT

A largenumberof tools that attemptto estimatenetworkcapacity
and available bandwidth use algorithms that are based on

measuringpacket inter-arrival time. However in recent years
network bandwidth has becomefaster than systeminput/output
(I/0) bandwidth.This meanghatit is gettingharderandharderto

estimatecapacityandavailablebandwidthusingthesetechniques.
This paper examinesthe current bandwidth measuremenand

estimation algorithms, and presentsan analysis of how these
algorithmsmight work in a high-speedetworkenvironmentThis

paperalsodiscusseshe systemresourcg hardwareand software)
issuesthat affect eachof thesealgorithms,especiallyrunning on

generic platforms built from off-the-shelf components.

Categories & Subject Descriptors:

B.8.2 [Hardware]: PERFORMANCEAND RELIABILITY —
Performance Analysis and Design Aids; C.4[Computer
SystemsOrganization]: Performanceof systems— Design
studies, Measurementtechniques, Performance attributes,
Reliability, availability, and serviceability; D.4.8 [Software]:
Operating system — Performance Measurement;
C.2.3[ComputerSystemsOrganization]:Network Operations
— Network monitoring; F.2.0 [Theory of Computation]:
Analysis of algorithms and problem complexity;
G.4[Mathematicsof Computing]: Mathematicalsoftware —
Algorithm design and analysis; C.2.5[Computer Systems
Organization]:Local and Wide-Area Networks— Busesand
High-speed.

General Terms:
Measurement, Algorithms, Performance and Design

Keywords:

Network, Bandwidth,Measure Estimation,Algorithm, System
Capability, Design, Performance

Permissiorto makedigital or hard copiesof all or partof this work for
personabr classroonuseis grantedwithout fee providedthatcopiesare
not made or distributed for profit or commercialadvantageand that
copiesbearthis notice and the full citation on the first page.To copy
otherwise,or republish,to post on serversor to redistributeto lists,
requires prior specific permission and/or a fee.

IMC?03, October 27-29, 2003, Miami Beach, Florida, USA.
Copyright 2003 ACM 1-58113-773-7/03/0010...$5.00.

1. INTRODUCTION

Active measurementis a convenient means to estimate
availablenetworkbandwidthfor ordinaryusersbecausét does
not require router access. Although passive network
monitoring methods such as simple network management
protocol(SNMP)[1] canprovidedetailedstatisticson network
elements(routers and switches)such as physical bandwidth
(capacity [6]) and utilization, they unfortunately require
special accessprivileges which are not usually available to
ordinary users.

Algorithms for actively measuring network physical and
available bandwidthshave beenresearchedor many years.
Many tools have beendeveloped.and only a few tools have
successfully achieved a close estimation of network
bandwidths, especially for networks faster than
100 Mbits/second.The main reasonthesealgorithmsfail to
accuratelyestimatehigh-speecetworkbandwidthis thatthey
do not take the capabilitiesof the measuremenhost system
into account.

Ideally, the network bandwidth estimationalgorithm should
not be dependenton end host performance.If end host
capabilities are involved, the measurementwill be of the
system throughput rather than the network bandwidth.
Unfortunately, most current available bandwidth estimation
algorithmsrequire that the end hostshave throughputhigher
thanthe availablenetwork bandwidth.The goal of a network
measurementtool should be to measure the available
bandwidthof the networkpath,not the availablebandwidthof
the measurement host itself.

A number of tools and algorithms do successfullyestimate
networkbandwidthon lower speednetworks.Pathchar [10] is
designedo estimatephysicalbandwidthof hop-by-hoplinks.
Clink [4] and pchar [23] are different implementationsof
pathcharPathload is for estimatingavailablebandwidth[10].
Nettimer [5] usesa passivealgorithm to measurethe narrow
link capacity of a path, but this algorithm requiresthat no
queuingoccur on any network elementafter this bottleneck
link, andthusworks only on very idealistic paths.Netest [16]
measures end-to-end achievable throughput or available
bandwidth,whicheveris feasible,on networksranging from
asymmetric digital subscriberlines (ADSL) to high-speed
networks. Netest also analyzesthe cross traffic, and thus
estimatesphysical bandwidth of the bottleneck link. This
paperwill analyzethe algorithmsusedby thesetools, aswell
as new tools pathchirp [15] and igi [18], and addresshow
system capabilities affect their measurementon different
typesof networks.Othertools, suchasbprobe/cprobe [2], ttcp
[19], iperf [21], netperf [22], Sprob [9], and Treno [24], do not

measure available bandwidth but rather achievable throughput
[16]. Therefore we do not discuss them here.

In addition to analyzing existing algorithms, this paper gives a
detailed discussion on end host issues and the techniques
required to estimate high-speed networks of the future using
PC-based hardware. Also, this paper presents an in-depth
analysis on the limitations of how the Berkeley packet filter
(BPF) can be used via packet capture library (libpcap) for
network measurement, especially on high-speed networks.

2. MEASUREMENT METHOD AND
HISTORY

Sending probe packets to networks is a common way to
actively measure network bandwidth. Figure 1 characterizes
various algorithms used to measure networks, and shows the
relationship between tools and algorithms.

For each algorithm, there are two different methods used to
probe the network: single packet and packet train (multiple
packets). There are several techniques for using these two
methods, such as varying the packet size, dispersion, spacing,
and so on. [5][6] present arguments on dispersion technology
and describes how useful they are. [12] presents ideas on
multiple packet techniques. Figure 1 illustrates that packet
dispersion is used in a variety of network measurement tools.

Ping is the earliest (1980) and simplest network measurement
tool based on a single packet probe. It measures the round trip
time (RTT) based on the time to forward a single packet plus
the time to get an Internet Control Message Protocol (ICMP)
reply packet. Ping results can be used to estimate network
congestion by analyzing the RTT variation. Developed in
1988, traceroute used a similar mechanism to measure RTT on
each hop. In the same year, ttcp [19] provided a method using
a User Datagram Protocol (UDP) stream to obtain a majority
of the path bandwidth in order to estimate the path bandwidth
in a highly intrusive manner. In 1991, netest-1 (netest version
1) used a burst methodology, assuming that a UDP burst can

gain most of the bandwidth in 10 RTTs (round trip time) if
most of the competing network traffic is Transmission Control
Protocol (TCP). The maximum burst size was set between 0.5-
1 second. Netest-1 repeats the same test in every 5 seconds
with a short UDP/TCP burst instead of a continuous UDP
stream.

The methods used by both ttcp (UDP mode) and netest-1 are
based on packet trains. Pathchar was released in 1997, used a
variable packet size algorithm to measure link physical
bandwidth. Since 2001, many bandwidth estimation tools have
been released, most of them designed to measure available
bandwidth, and most based on packet dispersion. Nettimer [5]
isfor estimating the narrow link (arouter or switch that has the
lowest capacity along a path) physical bandwidth. Pathload
[10] estimates the available bandwidth. NCS and netest rev. 2
are designed to measure bandwidth as well as the achievable
throughput and other important network characteristics. Two
new tools, pathchirp [15] and igi [18], are also for available
bandwidth measurement.

All of these tools are active measurement tools because they
send packets into the network in order to make a measurement.
Some tools, such as ping, are not intrusive. Packet-train-based
tools, such as ttcp, can be very intrusive, sending a large
number of packets into the network and possibly pushing other
traffic aside. Packet trains that are too long can also cause
router queues to overflow.

3. SYSTEM RESOURCES

Tools for measuring network bandwidth rely not only on
accurate mathematical algorithms but also on well designed
implementations that consider all possible effects of host
system performance. This section describes such issues.

System resources which affect network bandwidth estimation
are the resolution of the system timer, the time to perform a
system call, the interrupt delay (coalescing), and the system
I/0 bandwidth (including memory bandwidth). The timing-
related system resources — timer resolution, system call, and

Single Packet

Size Diff

Hop Diff Size Diff

/

Multiple Packet

VPT — Variable PPD OWD
packet train and virtual Packet Pt Disper- orewer b
VPS packet train that are vl <o Sper ay Delay
Variable Packet Size similar to VPS, but use FSE eg. Pathload
different converging e.g. Nettimer)
e.g. Pathchar algorithms. ') :
y 7
o= hopby-hop <& — - — - end-to-end

Figure 1. Using packet to probe network; also relations between algorithms and tools

interrupt delay — all affect packet-dispersion-based
algorithms much more than they affect packet-train-based
algorithms. System 1/0O bandwidth affects all algorithms
equally.

3.1 Interrupt issues

The I/O interrupt interval significantly impacts high-speed
NIC (network interface card) performance.For example, if
every packetarriving on an 1 Gb/s NIC generatesan 1/O
interrupt, then the systemwill get interruptedevery 12 ps.
Most host systemsare not ableto keepup with this interrupt
rate. A commontechniqueto reduceCPU requirementsandto
increase throughput is called interrupt moderation. Many
high-speedNICs, including the SysKonnectcard, provide
interrupt moderation(also known as interrupt coalescencer
delayedinterrupt), which bundlesseveralpacketsinto a single
interrupt. Theideais thatthe NIC, onreceiptof a packet,does
not automaticallygeneratean interruptrequestingthe CPU to
procesghe dataandreleasingbuffersfor the NIC to getmore
packetslnsteadtheinterruptis delayedfor a givenamountof
time (the interrupt moderation period) in hopes of other
packetsarriving during that time and being servicedby the
same interrupt.

Table 1. CPU utilization affected by 1/O interrupt

interrupt delay time % CPU | 9% cpu | Throughput
(coalescing) IDLE | Interrupt Mb/s
64 us interrupt delay for Intel
copperGigE (PCI/33GC-SL) 0 92 277
+ Intel P4 Xeon 3 GHz CPU
300us interrupt delay for 1 72 515
above configuration

Tablel shows how interrupt coalescing affects CPU

utilization, thus increasingthe network throughput. TCP/IP
packetsare 1500 bytesfor all measurementsthe CPU usage
was measuredby averagingresults from UNIX command
“top” with 1-secondrefresh rate when running iperf with

durationsof 10 and30 secondsThe“vmstatl” commandwas
also usedto verify the top result. In Tablel we seethat the
receivinghostneeded®2% of the CPUto handlel/O interrupts
with default interrupt delay settingsfor the NIC. After the
interrupt delay was increasedfrom 64 to 300us, the CPU
usage dropped to 72% due to the generation of fewer
interrupts.This meansthatthe CPU hasmoretime to process
packets,so throughputincreasedd85.9%. Figure2 showsthat
tuning the interruptdelay time is not trivial. Testswere done
settingthe delayfrom 200 to 550 us on an Intel P3 Xeon 933
MHz system(64-bit/66MHz PCI). The interrupt delay below
470us hasno significantimpacton CPU usage Delay values
betweend70us and475 pus makethroughputunstable This is

probablythe boundarywherethe CPU usageis sensitiveto the
1/0 interrupts. 480 us is the lowest value for getting good
throughputon this systemfor receiving a high-speedTCP
stream.

Ideally, the interrupt moderationperiod is short enoughto
keepthe NIC from running out of buffersandto avoid large
delaysin packetprocessing.The maximuminterruptinterval
(I_time) can be computed as:

GigE NIC interrupt delay effect on CPU usage

8@
75 Ko‘ negt ‘—6— i
7@
65
6@
55
5@
45
4@
35

CPU usage <>

L e

5 188 28 380 408 =151% 580
Interrupt delay <us?

Figure 2. Tuning interrupt delay time

|_time = N * average_packet_size / line_speed

whereN is the numberof receiverbuffer descriptorsstatically
compiled in the network interface device driver. The main

drawbackof interruptcoalescings thatthe kernelis no longer
ableto assignaccuratgimestampsgo the arriving packetsThe
problemis that packetsare processea significantamountof

time after they arrive at the host. Fortunately,some network
cards(for example,SysKonnect)have an onboardtimestamp
registerwhich can provide information on the exact packet
arrival time, and passthis timestampto the system buffer

descriptor We havemodified the FreeBSDSysKonnecdriver
to allow us to usethe NIC timestampinsteadof the system
clock timestamp [14].

Table 2. Time of Syscall

timestamp isvia Linux 2.4.1x FreeBSD 4.8-RELEASE
gettimeofday API timestam read/write | timestam read/write
and kernel TSC[*] sl R e | T
(microtime)
Xeon | 2.4GHz 900 1400 4409 1206
Intel 20GHz| 980 1100 4590 130
P4 (3567)
AMD MP 1730.7 4195 217
MHz (4033)
AMD XP 1400 282 506
MHz
746.17 943 2100 4700 289
Intel P3 MHz
531.83 970 2050 1800 380
MHz 4.3-R 4.3-R

3.2 System call issues

Table?2 liststhetime to performa systemcall on two operating
systemsrunning on various CPUs. The time to perform a
systemcall affects both the outgoing packetpacing and the
time to get timestampsfor incoming packets.In next section,
thesenumbersarebothusedto analyzehow packet-dispersion-
basedalgorithmsare affectedby systemcall time. The syscall
time is measuredfor two areas— getting a timestampand

[*]: TSC is referred as CTC — the real time counter (RTC), but not the CPU clock counter (CCC).

doing1/O. Eachsystemcall is measuredn 1 loop (singlecall),
1000loops(a valuebetweenl andthe longestloop), and1800
loops (large enoughwithout hitting the contextswitchtime —
10ms), and the result is a lower value with the higher
frequency.Gettimeofday is the UNIX syscallfor getting the
timestamp.The 1/O syscalltime is the averageof read and
write system calls. The read/write call test is done by
reading/writing zero bytes to the stdin/stderrin non-block
mode (O_NONBLOCK).

It seemsthat the cost of getting systemtime is almost a

constant,and the costis very high comparedwith the CPU

clock rate, especiallyon the FreeBSDsystems.What is the

reasonfor this?Sincethe CTC (clock time counter— industry
standard254 counter/timeralsoknown astimestamp counter

or TSC) chip is very simple andthereis no specific buslock

requiredto accessthis chip, the issueis the generic clock

accessmethod.To make the operatingsystemcode work on

different motherboardsthe CTC is accessedia the 1/0 bus,
either ISA or PCI, but not directly from the main bus. The

highest frequency of thesel/O busesfor accessingCTC is

33 MHz, and readingthe counterregisterrequires9-161/0

buscycles,dependingon how the codeis implemented!n the

best case,readingthe CTC registerrequiresabout 272.7ns

(91/0 cycles on 33MHz PCI bus); while the worst case
requires959ns (16 1/0 cycleson 16.667MHz ISA bus).[11]

confirmsthis calculationwhich matcheshe resultsin Table2

for Linux, which usesthe sameCTC (TSC) readcodederived
from FreeBSD.However,FreeBSDhastwo timestampmodes
— safeandfast. The fast modeis the sameasthe Linux CTC

read mode— onereadper request.The safe modereadsthe

counter3—4timesin orderto confirm and calibratethe clock

accuracyTheresultslistedin Table2 for FreeBSDarefrom a

backwardcompatibleimplementatiorthatreadstwo 8-bit time

registers(the newer CTC has16-bit time registers)to form a

16-bit counter.This explainswhy the costof readingCTC is so

high on FreeBSDsystems.This fact indicatesthat the cost of

gettingatimestampis in readingCTC (TSC)ratherthanin the

systemcall API gettimeofday. Therefore packetstimestamped
in user space via gettimeofday have similar accuracy as
timestampednsidethe kernel,for examplevia BPF (Berkeley
packetfilter). Table3 showssyscall cost on more operating
systems.

Table 3. Syscall timefor moreO.S.

(ORS} Hardware gettimeofday | read/write
Solaris 2.8333MHz Sparc 348 ns 8400 ns
Solaris 2.7400MHz Sparc 278-295 ns 5300 ns
AIX 4.3.3|RS 6000 > 3000 ns 8500 ng

IRIX 6.2/175 MHz IP28 7946 ns 28162 ns
BSD/OS 4526 MHz P2 10877 ns 11357 n$
Mac OS X1 GHz G4 1937 ns 2043 ns

10.2

The systemcall time also affects our ability to increasethe
system timer resolution. The current UNIX system timer
resolutionavailableto a user (via gettimeofday) is 1 pys. The
systeminternal timer resolutionis often at 1 nanosecondn
modernUNIX systemsHowever,thetime to performasystem

call limits the usertimer resolutionto 1.9 us on mostsystems
with x86-basedCPUsrunning Linux, andlimits it to 9 ps for
FreeBSDsystemdecausawo gettimeofday callsareneededo
get the relative time. Therefore, the design of bandwidth
measurement algorithms must take this issue into account.
NotethatanonboardNIC timer, asmentionedatthe endof the
§ 3.1, may not improve the timer resolutionfor this situation
becausethe CTC still needsto be readto obtain the current
systemtime. The onboardNIC timer alsoneedsto be accessed
to obtaintherelativeclock to computethearrival time for each
packet.

4. TIMING EFFECT ON EXISTING
ALGORITHMSFOR BANDWIDTH
MEASUREMENT

This section describes the algorithms currently used to
measure network bandwidths, and analyzes the system
resources requirements for each algorithm.

4.1 Single packet oriented algorithms:

Pathchar usesvariable packet size (VPS)algorithm,including
size differential (SD) andhop differential (HD)[8] methodsto
estimatelink physicalbandwidth.The SD algorithmmeasures
the time difference, AT, for a constantAS — the size
differencefor packetsizeincrement,by sendingUDP packets
from the sourcehostto eachnetwork elementand measuring
thetime to getan ICMP responsdFigure3). Thusthetransfer
rate can be denoted as:
AS

RTx T AT

AS=S-S,, S;and$ are sizes for tw different packts

AT=T,-T;, TpandT,are the time to send patk § and S toa
router respeciely.

This algorithm hasa limitation that the maximum AT, which
dependon the maximumpacket-sizedifference,is limited by
the MTU (maximumtransferunit) of the networkinterface.If
the network interface is Ethernet, the maximum size
difference/AS is 1472bytes.Whena link bandwidth(BW) is
OC-3 (155 Mbits/sec) or high,evheAT will be smaller than

1472X 8+ 155 10° = 75.974us

A typical multi-hop round-trip time (RTT) is greaterthan
1 ms, and typical systemcontext switch time is 10 ms. For

shortdistanceqRTT < 6 ms), the routerqueuinghasa higher
effectonthe RTT, andthe averagequeuingdelaywe have seen
by ping is around0.05~0.3msfor RTT lessthan6 ms.In long

distance cases, at least every other measurementwill be
interruptedby one context switchif thereis any otherprocess
running, and the context switch hasmore impacton the RTT

measurementUnder suchcircumstancesthis RTT fluctuation
causesa +5% error rate (where the contet switch may
introducean even higher error rate) in time measurementso
the deviation of RTT (Agr7), is greaterthan 50 pus. Under
these circumstances, the timefdience becomes

AT=T,-Ts

= (S+BW + RTT)) - (S+BW + RTTY

= AT (zero trafic) T ArTT (1)
where

S and S are the sizes of the gest and smallest pasts

T, and T are the time to transfer each of these paclets
RTT = Toys+ Tps+ Tq + Tack

Tsysis the system call time
Tpsis the time to send (cypa packt from user space to the

edge of a netark interface card (NIC) or the verse.
Tq is the queuing time for both directions
Tack is the time for ackmdedgment to treel back

Therefore,transmissiontime is not directly proportional to
packet size in the real network.

The time difference between the largest packet and the
smallestpacketthatcanbetransmittedrom a sourcehostto an
intermediaterouteris inaccuratewhen Qg1 hasa magnitude
similar to AT (zero traffic): and thus dominates/AT. So, this
algorithmis only goodfor probing networkswith capacityup
to OC-3 (155Mb/s) whenthe MTU is 1500 bytes(seeresults
onp. 17-18[26]). In anetworkwherejumboframes(9 KB) are
used,this algorithm may measurecapacityup to 1 Gb/s. The
main merit of this algorithmis that the sourcehost doesnot
need high-transfefrate hardware to measurebandwidth on
high-speed netarks.

Since crosstraffic can causeT1 and T2 to vary greatly, a

single probe will not get an accurateestimateof available
bandwidth. In order to obtain a more accurateresult, this

algorithmsendsa numberof differentsize packetsto measure
the bit rate for eachpacket,andthenuseslinear regressiorto

converge on a result.

Figure3 showsthe VPS timeline for transferringtwo packets.
It showsthat Rty on thefirst hop representshe link capacity,
and Rty on the remaininghopsdoesnot becausef storeand
forward delay. To acquirethe time differencebetweenrouter
N and router N+1, hop differential (HD) is needed.

In Figure3, the times have beenshifted so that starttime of
both packetsl and2 arealignedattime O on the graph.At hop
1 (sourcehostto router A), thesepacketsleave router A at
differenttimesdueto the storeandforward delay. This means
thatATg = T,g - T1g doesnot representhetime differenceof
transferringthesetwo packetsfrom A to B. Figure3 shows
that the storeand forward delay betweenthesetwo packetsat

— - — pacletl
paclets’ start times are nudged —--— paclet2
! — —= ICMP
g /
IA | Tic Tac
O R e A
/ ! / /7
/ Tig ,/ o
Bl AL A= 4
e Ve ’ 'TZB
/ Tia. 7 - ,/ /\ \
AT _Ikk_‘/__/__i_'\
a4 N ATq
/ | \\ \ \
El TZA ATA Time
4—52>

Figure 3. VPStransfer timing of two packetson a

router A is ATy = Toa - T1a. SO, the real time difference
between transferring these two packets from A to B is:

ATpg =ATg - ATpA=Tog - T1g - (T2a - T1a)
and the bandwidth of this link is:

BW = AS + ATAB
This is the hop differential algorithm. This algorithm hastwo
network element (router and switch) related issues. First,
different routers may have different ICMP responsetimes.
This discrepang createsdifficulties for algorithmsbasedon
the hop differentialcalculationandis the reasorwhy pathchar
sometimesgives negative results. Second,if arny network
elementthat has no ICMP response(e.g.: a layer2 switch),
called a hidden device, is immediately before the measured
router, the hop differential algorithm will resultin a lower
bandwidth, which can be computed by a serialization formula:

BWAX BWB

BW= —— —
BWA+ BWB

BW, and BWg are physical bandwidthsof router A and B.
This is how the HD algorithm can be usedto detecthidden
devices.

4.2 Packet dispersion based algorithms:

Packetdispersionhappenshetweenany packetpair — both a
single packetpair and packetpairswithin a packettrain. This
section describes three algorithms based on the packet
dispersion: single spacing, constant spacing, and variable
spacing.

Single spacing (packet pair) —

Packet pair dispersion (PPD)is usedin nettimer to analyzethe
bottlenecklink capacity.Nettimer usesa passivemeasurement
methodto look at incoming packetpairs from a given source
host. This algorithmis demonstratedy the dottedline box in
the lower left cornerof Figure4. The PPDalgorithmsaysthat
if a pair of packetstravelsback-to-backthrougha bottleneck

™ e 22

Current Velocity
(m/sec.)

Flow (m*/sec) = Constant I | equivalentio
L]

in the entire system
51 ||

-
o

i =01 [D2

=
=
Z
%
11
g
a
g
o8
I
2
=
-— -
&
£
H

Packet Train Rate
s (Effective Bit Rate),

AN

’
2H” e
/|

M4 M1

AR
AN
ANOOOONDN
AN,

E
—
—
—
—

o

2

=
BTN
AN
P
L | e

I
L
S
g
S

Figure 4. Packet pair and Fluid Spray Effect (FSE)

link, thelastbits of thetwo packetsarefurtherseparatedAfter

theyleavethe bottlenecklink, this separatiorwill remainuntil

they arrive at the destination.So, the PPD representsthe
narrow (bottleneck)link’s capacity.This is true if andonly if

no crosstraffic occursat the later routers.The Internetalmost
always has crosstraffic, which causesthe fluid spray effect
[13] (FSE— Figure4 and § 11.C) when manytraffic streams
comein from differentinterfacesandareroutedout at another
interface with all the packetsbunchedtogether,so that the
PPD theory does not apply.

This algorithmrequiresonly oneresource— accuratesystem
timer resolution,sinceit is a passivemonitoring method.To
accuratelymeasurepacketpair dispersion,the incoming PPD
mustbe greaterthanthe time for executingat leastfour system
calls, two for gettingthe arrival time of eachpacketandtwo
for readingeach packet. A mandatoryrestriction is that the
network device cannot have interrupt coalescing enabled,
otherwisethe packetarrive timestampswill be incorrect. For

example, all incoming packets may have the same timestamp.

Constant spacing (self-loading periodic streams)

Pathload usespackettrainswith evenly spacedpacketswhich

detect one-way delays (OWD)[6] to measure available
bandwidth. Theoretically, this algorithm may accurately
measuresavailablebandwidth.The actualmeasurementesult
will vary, especiallywhen measuringa high-speednetwork,
due to the hardware capability and implementation. As

discussedn § 5, to use packettrains to measurebandwidth,
both sending and receiving hosts must have higher 1/O

bandwidth than the available network bandwidth. To cause
OWD, the probestreammusthavea highertransferrate (Rgpg

than the available bandwidth (Ap,,). The difference between
RsngandAy,, dependonthe Ay, andNIC speed— the higher
the speed,the larger the difference of betweenthe Ry,4 and
Apw- For example,if the Ay, is 900 Mb/s, the OWD requires
920Mb/s Rgng but for 9000Mb/s Ay, the OWD requires
9200Mb/s rather than 9020Mb/s Rgng Intuitively, this

difference is directly proportional to the resolution of the
systemtimer. The higher the resolutionof the systemtimer,

the smallerthe differencerequiredto determinghe OWD; thus
the result is more accurate.

The minimum time neededto distinguishthe delay can be
eithera fixed amountof time or somepercentagef the time
neededo finish the bursttransfer.If thereceiveris currentPC
hardwarewith 1 us time resolutionand a timestamptimer on
the NIC, a few microsecondgfor getting the systemtime) or
the time for two systemcalls (readdataand get systemtime),
whichever is greater, can be the lower limit for the time
difference.The basicrequiremenfor this algorithmis thatthe
source host needsto have a higher transfer rate than the
available bandwidth.

Pathloadusespair-wise comparisontest (PCT) and pair-wise
differencetest(PDT) metricsandstatisticsto detectthe OWD
trend.This algorithmbuildsaregion,calledthe gray area, that
canbe adjustedto estimatethe Ay, Metric resultsabovethe
gray arearepresent strong OWD trend, and below the gray
arearepresenno OWD trend.Thus,the gray areais the range
of estimatedavailable bandwidth. Pathloadcan estimatethe
path’savailablebandwidthin this mannerwithout requiringa
high-resolution timer.

igi [18] — initial gapincreasing— usesthe similar algorithm
with modified method— PTR (packettransmissionrate) in

Time
Figure5. Transmitting timeline of variable spacing packet

order to make measurementmore efficiently. However, it
omitted someimplementationissuessuch as timer resolution
andinterruptcoalescingtherefore the resultsarenot accurate
on hostswith GigE NICs (seeComparison results atthe endof
this sectionB).

Variable spacing (gaps increase crossing the packet train)

The transmittingtimeline of the variable spacingpackettrain

is shownin Figure5. This algorithmis usedin pathchirp for

available bandwidth measurementlt assumeshat once the
transmitrateof any packetpair, P, andPy..4, within the packet
train is the sameas the available bandwidth, the remaining
packetpairsafter packetP,, which havea highertransmission
rate, will be further separatedby crosstraffic. That is, the
dispersionof therestof the packetpairsat thereceiverwill be
larger than the spacing at the senderside. If the packet
dispersion increasesconsistently, then the sending rate at

packet pair Rand R, is the available bandwidth.

This algorithmis efficient for estimatingend-to-endavailable
bandwidthbecauset cantheoreticallymeasurethe available
bandwidthin one round trip time. Requirementsof system
resourcesfor this algorithm, however, are very high. Basic
requirementgor this algorithmincludethe maximumhostl/O
bandwidth and accuratetiming system. The measurement
systemgqboth sendinghostandreceivinghost)needto beidle,
so the sendercan paceout a packettrain with precisetiming
andthe receivercantime the incoming packetaccurately.The
timing requirementis similar to that of nettimer. Due to the
time requiredby the systemcall describedn Table2, andthe
I/0 interruptdelay (coalescingausedy high-speechetwork
devices(1 Gb/sor higher),the variablespacedpackettrain is
also difficult to generateon systemsequippedwith a high-
speednhetworkinterface especiallyunderthe FreeBSDsystem,
which canonly accuratelypaceout packetsup to 470 Mb/s on
typical mid-range hardware due to the large system call
overhead.

Accurately detectingthe gap increaseis difficult when the
networkspeedis higherthan300 Mb/s and/orpacket-pairate
is higher than 50% of the network speed.A couple of key
issuesmake this measuremendifficult. First, the numberof
packetsthat canbe sentis limited by the timer resolutionand
the range of packet speed.For example, measuring GigE
network where utilization is 50%. The period of a 500Mb/s
packetpair is 24 us, andthe period of a 1 Gb/s packetpair is
12 ps. Becausethe system timer resolution is 1 ps, the
maximum number of packetsthat can be sent betweenthe
500 Mb/s packetpair andthe 1 Gb/s packetpair is 11packets.
Dueto othersystemoverheadthe numberof accuratelyspaced
packetpairsis abouta half of that, or 5 packets.Under this
circumstance crosstraffic can either compactor spreadout
this small packet fleet, causing undeterminable results.
Second,when the packettrain tail is short (e.g.: 5 packets),

even though the crosstraffic is less than the path capacity
minusthis probetraffic, it will mostlikely increasepacket-pair
gapsin theseprobepacketswhenboth traffics encountereach
other, causingunderestimationof the bandwidth.Seecasel

and case?2 illustrated in Figure6. Furthermore,by default,
interruptcoalescingon Gigabit or high-speedNICs bunchesb

to 12 packetstogetherfor oneinterruptservice Without a user
accessibleonboardtimer, the systemwill think all the packets
arrived at the same time.

Due to thesefactors and discussiondrom previoussections,
the variablespacingpackettrain algorithmmay not be ableto
measurebandwidthabove OC-12 (622 Mb/s). A larger MTU
(also called Jumbo Frame) can improve the measurement
conditionfor currentnetwork bandwidth.However,the Large
MTU hasnotyetbeenstandardizedAssumethata 32KB MTU
(the largestIP frame) might be acceptedby network standard
in a few years,it could make variable spacingalgorithm 20
timesbetter.However,if this MTU sizethenlastsmorethana
dozenyears,the network bandwidthmay increasemore than
20,000times. So, we cannotsimply wait for MTU increasing
to help algorithms functioning properly.

Comparison results:

Current tests show that igi consistently underestimates
available bandwidthon 1 Gb/s paths.For example,igi gave
resultsof 219 Mb/s on aone-hopl Gb/spaththatwasonly 7%
utilized, and 336 Mb/s on an 8-hop 1 Gb/spathwhatwas27%
utilized (utilization was measuredy netest). Pathchirp (1.3.3
releasedoesnot produceanyresultif the measuremenperiod
is lessthan 30 secondsor the parametelis greaterthan250m
usingthe“-u” optiononthe one-hoppath.Whenusedwithout
any option, pathchirp measurementresults were between
70.58-94.3Mb/s on the samepath. One-hoptestswere done
betweentwo Linux 2.4.20testbedhosts:(1) a dual Intel Xeon
2.2GHz CPU with Syskonnect®9843 SX GigE fiber NIC and
the maximum network systemthroughput(MNST) of 1 Gh/s
on a 64-bit/66 MHz PCI; and(2) an AMD 1.4 GHz CPU with
NetgearGA620T GigE copperNIC andMNST of 710 Mb/s on
a 32-bit/33MHz PCI. The maximumthroughputon this one-
hop path is about 690Mb/s. The 8-hop tests were done
between the dual Xeon host and a dual AMD MP host
(1.4 GHz CPUs)that alsoruns 2.4.20Linux with Syskonnect
9843 SX GigE fiber NIC (MNST of 725Mb/s on 32-
bit/33 MHz PCI). After upgradedLinux to 2.4.210n the one
hoptestbedthe peakthroughputis increasedo 732 Mb/s, and
igi gives a better result of 339 Mb/s Ay, where pathload
reports 676 Mb/s Ay, and netest report the maximum
throughput is 705 Mb/s. Igi seemsto be more system
dependent.

4.3 Packet train based algorithms

Packet-train-basedools do not measurethe packet pair
dispersioninside the packettrains. Packettrain algorithms
attemptto determinethe amountof crosstraffic ratherthanthe
amount of packet dispersion caused by the cross traffic
[Figure6]. Therefore, packet-train algorithms are less
sensitiveto the resolutionof the systemtimer andlessaffected
by 1/0 interrupt delays (coalescing). Also, packet train
algorithms do not rely on any single packet pair; therefore
increasing the packet length can help to overcome timer
resolutionproblemwhenmeasuringrery high-speecetworks.

A well-knownissuewith usingpackettrainsis how to measure
the capacityof links beyondthe narrowlink. [13][8] proposed
asolutionto this problembasedon thefluid spray effect (FSE),
summarized here.

FSE theorem:Assumethattwo packettrains,bothtravelingat
speeddower thanthe network capacity,encountereachother
atarouter.If the aggregateate equalsor exceedgsherouter’s
capacity, all packetsare bunchedtogetherto form a new
stream.When this streamleavesthe router, its train rateis at
the outgoingrouterinterface(line) speed.This is shownin the
lower right in Figure4, which alsoshowsthatif anincoming
train is long enough,a pair of packetsor a “subtrain” within

this train will travel at the line speed when it leaves the router.

FSE happensalmost everywhereon the Internet. The packet
bunchingeffectis different at eachrouterbecausesachrouter
hasdifferentbandwidthandcrosstraffic. This packetbunching
extent can be fed back to the source host via an ICMP
messageas the ICMP messagewill carry packetdispersion
information on eachrouter back to the sourcehost, and the
sourcehostcanusethis informationto computeeachrouter’s
physical bandwidth. This method allows packet-train-based
methodsto measurénop-by-hoplink capacitybeyonda narrow
link.

Original packet train sent out from source NIC for probing

SO0
Car l

Cross Trufﬁi RN
33 sab2

Case 1: Cross fraffic does not effectively affect probing packet frain
Car {sub—train) 1 and 2 are not affected by cross traffic and car 2 and 4 have minor impact from cross
traffic, so available is higherthan current packet train rate, and sending‘receiving ratio is not computed

Sob2 (V237

l:‘

Case 2: Ditto, no sending fo receving ratio needs 1o be computed.

Case 3. able to detect cross traffic
All subtrains are affected by cross traffic as well as the main train, and sending/receiving ratio is computed.

Figure 6. Crosstraffic effect to the packet train rate

Using packet trains for end-to-end network bandwidth
measurementequires fewer system resources.Netest uses
feedback adaptive control and feedback asymptotic
convergence(FACz) algorithm [13] to measureend-to-end
availablebandwidthand analyzecrosstraffic, then computes
the bottleneck capacity of the path. Figure6 illustrates the
FAC? principle of how crosstraffic affectsthe packettrain rate
from sourceto destination.The netest client on the sending
host sendsout a constantspacedpacket train at the rate
recommendedfeedbackadaptivecontrol) by the netest server
runningon the receivinghost. The netest servermeasureshe
incomingratefor eachcar [8] (measuremeninit in numberof

MTUSs, see Figure 6) and the rate for the entire packet train.
When the adjusted sending rate to receiving rate ratio is close
to 1, the receiving rate is the available bandwidth. The
theoretical convergencetimeis5 RTTs[13].

Because algorithms based on packet trains measure the arrival
time of each car instead of each individual packet, the time
resolution issue is simplified. Packet-train-based algorithms
can adjust the car size to fit the system time resolution, while
packet-dispersion-based algorithms have to rely on how
accurately the system can measure the biggest single packet
(one MTU). Therefore, packet-train-based algorithms work
better in high-speed network environments, especially for end-
to-end bandwidth measurement. [13] mathematically proves
that a packet-train-based algorithm, FAC2 can measure
available bandwidth accurately. Using an emulation network
testbed [20] we have verified that the accuracy of FAC? is
close to 99% when path utilization is below 70%. In high-
utilization cases, FAC requires more probes to converge to an
accurate result, as shown in Figure 7.

of probes FAC corwerging time

a0

45

40

35

30

25

n

15

10

]

o . . . L
a n 40 [atol 80 100

Metwork utilization (%)

Figure 7. Feedback Asymptotic Convergence

5. FUTURE BANDWIDTH
MEASUREMENT

In this section we discuss the system hardware issues required
to estimate new high-speed networks such as OC-48 (2.4 Gb/s)
and 10 Gb/s Ethernet.

Single packet, packet dispersion, and packet train are different
techniques to probe a network for measuring bandwidth. In
order to measure high-speed networks, the single packet
method requires a high resolution timer due to packet size
constraints. A similar issue applies to the packet dispersion
algorithms. For example, a 1514-byte packet transmitted
through a 10 Gb/s NIC takes about 1.21 ps, and this packet
traveling through a 1 Th/s NIC takes only 12.1 ns. Current
UNIX timer resolution is 1 ps, which makes it impossible to
measure any incoming packet over 3 Gb/s due to the additional
overhead of system calls. When the receiving interrupt is
coalesced, the packet dispersion isimpossible to measure.

The packet train technique has no size restriction for its car
[Figure 6], therefore, the time resolution is not crucial.
However, it still requires that the source host must have a
higher sending rate than the available bandwidth, and have the
ability to control the burst size and sending rate. The high
sending rate may sound trivial, since modern CPUs and NICs
are fast. In fact, it is more complicated.

Past Wide Area Network (WAN) Bandwidth

Loca Area LAN
Network (LAN) End Host (EH)
EH/LAN Current WAN Bandwicth EH/LAN
EH Future WAN Bandwidth EH

Figure 8. Network and system bandwidth change scale

Currently, the end host I/0 bandwidth is similar to the network
bandwidth. The end host is the main factor limiting network
application throughput in the future. A host’s memory, 1/0
bus, NIC, and operating system affect the throughput. Thus, a
method to determine if the end hosts are capable of measuring
the available bandwidth is a required part of bandwidth
estimation algorithm design.

In the past 10 years, network speed has increased by a factor of
1000; CPU clock speed has increased by more than a factor of
30; memory clock speed has increased by almost a factor of
20. Memory bandwidth, however, has increased by only a
factor of 10, and PCI 1/0O bus bandwidth has increased by only
a factor of 8. If these growth rates continue for the next
decade, the end host will certainly be the throughput
bottleneck for network applications. The growth of network to
system bandwidth scale is shown in Figure 8.

The main bottleneck in current systems is at the memory and
1/0 subsystem. Figure 9 shows the data path for sending data
from user memory to the NIC. For a system equipped with a
64-bit/66MHz PCI bus, if the memory bus is 266 MHz, the
total time needed to transfer data from a user buffer to the NIC
is 6 memory cycles: the 2 fixed cycles plus 4 memory cycles
per bus cycle (266/66). However, if the memory bus is
533 MHz, then 10 cycles are required (2 + 533/66). The

user memory

Q :
Memory bus s% ¢ time= 2 cycles
kernel memory

oA
PClbus & time =

Nework __#| niC

memoryclock

1Obusclock cycles

Figure 9. Hardware data path for packets

generic formula for calculating the 1/0O throughput from
memory and 1/0 bus frequency is:

MemoryBandwidth

IOthroughput = (PCI + Memory x 2)cycles

_ MemoryBandwidth
MemoryClock . 2
|OBusClock

Let us apply this formula to a real case. An ASUS K7V
motherboard is equipped with VIA 868 PCI controller that has
a 133 MHz memory bus, and it produces 144 MB/s memory
copy bandwidth (288 MB/s memory bandwidth). The newer
generation VIA PCl controller, VT400, has a 400 MHz
memory bus and produces 326 MB/s memory copy bandwidth
for the ASUS A7V8X motherboard. Both motherboards have a
32-bit/33 MHz PCI bus. According to equation (2), a VIA 868
system can have a maximum 384 Mb/s (48 MB/s) network
throughput, while a VT400 motherboard can have only
369 Mb/s network throughput. In fact, due to DMA overhead
(see the next paragraph), the VT400 motherboard only has
300 Mb/s network throughput, while the same NICs can
produce 2 or 3 times higher throughput on other motherboards.
Therefore, we can see that simply increasing the memory clock
speed does not necessarily result in an equivalent increase in
the data transfer rate from user space to the NIC. [17] presents
some specific tuning ideas on how to speed up the 10-Gigabit
NIC performance.

Direct memory access (DMA) operation overhead is related to
the PCI burst size because each DMA transfer needs to acquire
the bus (bus arbitration), set the address, transfer data and
release the bus. The total clock cycles needed for a burst
transfer is

total clock cycles =8 + (n-1) + 1 (Idle time on bus)

where n is the number of data transfers per burst, and
8 is the overhead of burst operation

Table 4 shows the latency and transfer rate of using different
burst sizes for data transferring across the PCI bus. It clearly
shows that as the burst length increases, the transfer rate
increases. PCI-X extends the burst size to a few kilobytes,
which can improve the I/O performance where large burst
sizes can be applied.

Table 4. Latency for Different Burst Length Transfers
(32-bit/33MHz PCI)

Burst | Total Bytes | Total Trsgier Latency (ns)
Size | Transferred| Clocks &
(MB/s)
8 2 16 60 480
32 128 40 96 1200
64 256 72 107 2160

An interesting issue in improving network transmission and
receiving isthe use of the so-called zero-copy implementation.
A common misconception is that zero-copy implementations
may double the network transfer. However, zero-copy
implementations only help I/O performance when the 1/0 bus
clock rate is close to the memory bus clock rate. As the
memory to 1/O bus clock ratio increases in the future, zero-
copy will not be very helpful for host I/0 performance. The
zero-copy implementation will help the system to reduce the
CPU usage, because the user to kernel space memory copy is
done by the CPU. So when the I/O performance is CPU bound,
zero-copy will improve throughput. A key issue with a zero-
copy implementation is memory page mapping. To map an 1/0
memory buffer to a user data buffer, the buffer size must be
equal to the memory page size, typically 4 KB, controlled by
memory controller (hardware). This requires that 1/0O databein
4-KB data blocks, which does not map well to 1500-byte
packets of current Ethernet-based networks. When Jumbo
Frames of at least 4 KB are used, then a zero-copy
implementation will be possible.

The percentage of performance that will be increased can be
derived from equation (2) above and substituted into equation
(3) below:

newThroughput —oldThroughput

percentage = newThroughput

MemoryBandwidth MemoryBandwidth
MemoryClock MemoryClock +2
|OBusClock 10BusClock
MemoryBandwidth
MemoryClock
|OBusClock

- 2 x 10BusClock ©)
MemoryClock + 2 x |0BusClock

A zero-copy implementation is not really zero memory copy, it
only eliminates the memory copy from user space to the kernel
or inversely. It will never eliminate the I/O bus transfer
(DMA), which is the major bottleneck to the I/O performance.
That is, only two memory cycles are eliminated in zero-copy
implementation. If 1/O bus speed is 66 MHz and the memory
busis 133 MHz, the performance will be increased by

66 x 2

—_— = 0
133+ 66 %2 49.8%

percentage =

but if the memory bus increased to 400 MHz, then the
maximum percentage of throughput improved by zero-copy
implementation is

66 x 2

_ — = 0,
400+ 66 % 2 24.8%

percentage =

Another method to on increase system performance is to use
SMP (symmetric multiple processors). High-end 1/O buses are
most likely only supported on SMP motherboards. For
example, most x86-based single CPU motherboards only have
32-bit/33MHz PClI bus, while al x86-based SMP
motherboards support PCI-X and 64-bit/66MHz PCI buses.

PCI-X will help to increase the 1/0 performance, but when
using SMP systems, one must be aware that plugging in two or
more CPUs will reduce the system memory bandwidth. Thisis
due to the bus arbitration. For example, just plugging a second
CPU on a SMP motherboard without using it can reduce
memory bandwidth by 10-15%. Activating the second CPU
with an SMP OS kernel will reduce memory bandwidth even
more, up to 20%.

Summary

Achieving a fast enough packet sending rate to measure high-
speed networks is not trivial on current (or even near-future)
hardware. Therefore, as part of the design of network
bandwidth estimation algorithms, host hardware, memory
bandwidth, CPU power, 1/0 bus bandwidth, and NIC speed all
need to be considered. This allows an algorithm to determine if
a given host is capable of measuring bandwidth. To measure
available bandwidth, both hosts must be able to handle data
transfer rates higher than the available bandwidth. Otherwise,
only the maximum throughput of the slower end host can be
measured.

Implementation of the algorithm is another important factor
affecting the data transfer rate. The implementation also
depends on the operating system. For example, assume that a
system has 1000 MB/s memory bandwidth, and one system
call costs 1 ps. Sending a 20 KB UDP datagram from user
memory to NIC memory takes 100 ps + 1 ps. If this datagram
issent as 20 1 KB datagrams, then the total time will be 100 ps
+ 20 us. The second method reduces the transfer rate by
approximately 20%. So, in algorithm design and
implementation, both hardware and software issues must be
considered.

In summary, our study shows that algorithms are more robust
if they have lower system resource requirements. Algorithms
restricted by timing related system resources will have
difficulty measuring network bandwidth on high-speed
networks. One possible solution to timing-related problems is
to directly access a system real-time clock register in order to
obtain the accurate time. A generic solution is to use a time-

insensitive method such as packet trains to build new
algorithms.

6. USING BERKELEY PACKET FILTER

The Berkeley packet filter (BPF) provides an interface to
network data link layers in a protocol-independent fashion. All
packets traveling on the network the host is attached to are
accessible via this mechanism. BPF also can timestamp each
packet as it arrives. However, obtaining an accurate packet
arrival time is a very difficult task when the NIC speed is
1 Gh/s or higher; and using current PC-based hardware to
capture all packets in a high-speed flow is non-trivial.

Time related issues — interrupt moderation and the cost of
obtaining system time — were discussed in § 3. These both
introduce timing errors during timestamping of every
incoming packet. Errors occurring via get system time
function, gettimeofday(), may be correctable when the error
rate is low, but errors caused by interrupt moderation are not
correctable. In measuring a1 Gb/s network, the maximum time
for receiving two contiguous 1500-byte IP packets is 12 ps.
According to the discussion in § 3, the system time function
(getting time from the clock time counter or CTC) will
introduce an 8% error (based on 959 ns cost of microtime
kernel function). When measuring a 10 Gb/s network, the
maximum packet spacing is 1.2 us, so the 959 ns cost will
result in an 80% error. Since the cost of the microtime function
is relatively constant, this error can be calibrated by
subtracting the microtime function cost from the packet arrival
time.

The interrupt moderation causes non-correctable time errors
because all incoming packets are collected and DMAed (direct
memory access) into system memory without timestamping
until an 1/O interrupt occurs. Once the interrupt moderation
time has expired, the network device driver is triggered to
process all these packets in the system memory. This
timestamp is useless because the actual packet arrival time is
unknown. In 8 3, we mentioned that an onboard NIC timer is
one possible solution for this problem, but onboard NIC timer
technology is not suitable for a general purpose network
measurement tool. because very few NICs have an onboard

Regular data flow

— -

IP - TCP/UDP User Buffer
i
@)
o 5
L E L %
s)
m
© S,E’; User Buffer
. 2 ~_—
depend on filter(s) filted data rate
Data Rate 125MB/s >= 125 MB/s depend on the cache design

Figure 10. Hardwar e data path for incoming packets

timer. Also, using an onboard NIC timer requires modifying
the device driver for all NICs (with onboard timers) and BPF
catchpacket() + bpf_mtap() functions in all required operating
systems (For example, see [25] for the source code for
maodifications of using the SysKonnect NIC under FreeBSD).

Therefore using BPF is not a useful solution for general
purpose network measurement tools. It requires that
developers have a very deep knowledge of the device driver,
operating system kernel, application code strategy, and
algorithm development. It also requires a specific NIC and a
specific operating system to run. This prevents the tool from
being used on different systems.

Without completely understanding both operating system and
hardware system design, one might think that using BPF to
capture packets and timestamp them may be easier than doing
the same task at user level. In fact, using BPF to capture
packets often requires higher system resources, such as CPU
and memory bandwidth. Figure 9 is the data path for a normal
network traffic flow through the end host system. When the
BPF device is opened, the NIC operates in promiscuous mode
which allows all packets on that network segment to be
captured and copied into system memory. This behavior
changes the data path on the system. Figure 10 shows the new
data path, and this data path is highly sensitive to cache size
and data processing speed, including the CPU and memory
bandwidth.

Therefore, building a BPF-based capturing system requires
even more careful system design. A key issue when NICs are
operating in promiscuous mode on a host is that the amount
data transferred from NIC into system memory via DMA can
be at the maximum NIC capacity, not only the amount of data
sent to this host. Of course, this depends on whether or not the
host is connected to a shared or switched link. The design must
consider all the traffic from the network unless the host is
directly connect via a dedicated link. Let R;, be the capture
data rate, which isless than or equal to the Nlc?capaci ty (Rnic)s
the total memory bandwidth required for non BPF based
capturing systemiis:

Bandwidth = (PCI + MemoryCycle x 2) x ch

= PCI x ch + MemoryCycle x ch x2

and for BPF based capturing system is:

Bandwidth = PCI x R, .+ MemoryCycle x ch x2
+CacheableMemoryCyclesx R ;.

+L3L4MemoryCycles x R,

PCI isin equivalent memory clock cycles (MemoryCycle)
L3L4MemoryCycles is memory bandwidth for IP-TCP/UDP.

From the above equations, we see that if the data capture rate
is at the NIC capacity, the BPF-based capturing system needs
more memory bandwidth to do the filtering than the non-BPF-
based system. This bandwidth required for filtering depends on
the BPF filter size, BPF buffer size, cache size, and how fast
an application can drain the filtered data (the CPU speed).

When the data capture rate is less than the NIC capacity, a
BPF-based capturing system requires extra memory bandwidth
to handle the unwanted data DMAed into system memory, and
this amount of bandwidth cannot be reduced. The tunable
bandwidth is the amount (CacheableMemoryCycles x Packet
Rate) required by the filtering process. In general, the BPF
buffer size should be about one half of the cache size (built-in
CPU cache controller), assuming that CPU speed and incoming
packet rate (the number of packets per second, not the data
rate) are moderate. If the CPU is capable of faster filtering and
the capturing application can drain the filtered data
immediately, then the BPF buffer size should be larger than
one half of the hardware cache size. If the packet rate is higher,
the BPF buffer should be relatively smaller. Theideaisto keep
the packet header access cost in one CPU clock cycle instead
of in one memory clock cycle, which is N times greater than
the CPU clock cycle (N is the ratio of the CPU clock rate to
memory bus rate). For example, a capture system has a
933 MHz Intel P3 Xeon CPU with 256 KB cache to capture
1 Gh/s network traffic. A 141 KB BPF buffer gives the best
system performance, capturing 242,718 packets per second
(average 515 bytes per packet) for tcpdump to write resultsto a
fast local disk (100 MB/s). When the BPF buffer was increased
to 512 MB, the capture rate dropped to 226,222 packets per
second. With a 32 KB default BPF buffer set by libpcap, the
capture rate is 45,244 packets per second using the same
average packet size.

Above discussions are for using BPF on a receiving host.
When using BPF on a sending host, it requires more memory
bandwidth. Besides accommodating all incoming traffic, the
sending host also needs to send traffic and to do filtering on
outgoing traffic. This is the reason why running tcpdump on a
sending host cannot completely capture all outgoing traffic.
Therefore, when designing a network measurement system
using BPF, the algorithm has to consider if the tool is for
measuring sending traffic or receiving traffic. These factors
illustrate that BPF is a useful mechanism for capturing packets
for data analysis, but may not be suitable for measuring
bandwidth on a high-speed network.

7. CONCLUSION

An important issue for implementing available bandwidth
algorithms is the speed of the measurement host compared to
the physical bandwidth of the network. Current high-speed
network bandwidth exceeds most available system /O
bandwidth, and this will likely continue for the foreseeable
future. One should not expect that simply faster CPU or
memory will make the measurement job easier.

Two issues arise when determining how to measure
available bandwidth on a high-speed network:

1) Can a slow end host measure a network bandwidth that is
higher than the host NIC bandwidth and/or the I/O bus of the
end hosts? Existing algorithms are only able to measure the
network capacity, but not available bandwidth. Current
algorithms for measuring available bandwidth require that the
end hosts have higher throughput than the available network
bandwidth. Therefore, new available bandwidth estimation
algorithms are needed. One possible solution is to measure
physical bandwidth, then estimate cross traffic, thus
computing the available bandwidth.

2) It is important to take into account the system timer
resolution when designing available bandwidth measurement

algorithms. When the network capacityis high, the time to
transmitor receivea packetbecomesvery short. Therefore,it
is not possibleto measureavailable bandwidthusing packet
pair dispersion algorithms on very high speed networks.
Current experience shows that using packet trains is an
excellentalternativefor building algorithmsto measurethe
network bandwidth in the future.

Basedon the aboveanalysisand discussion,we conclude
with the following advice for designersand implementersof
high-speecetworkavailablebandwidthestimationalgorithms
and tools:

1. Most existing available bandwidth algorithms and tools
areonly accurateup to speedsof 100-150Mbits/second.
A very few algorithms work on speeds up to
1-2 Ghits/second. Future algorithms should target
network speeds of 10 Gbhits/second or higher.

2. When designingand implementing available bandwidth
estimationalgorithmsandtools, one mustbe very aware
of the system hardware issues described in this paper.

3. The packettrain is currently the best methodologyfor
building algorithms to measure high-speed network
bandwidth.

4. Toolsthatattemptto measureavailablebandwidthshould
attemptto determinewhetheror not the measuremertiost
is the bottleneck,and report this fact when it is. New
algorithms are needed that do not require a high-
throughput end host to measure network available
bandwidth.

8. ACKNOWLEDGMENTS

This work was supportedby the Director, Office of Science.
Office of Advanced Scientific Computing Research.
Mathematical, Information, and Computational Sciences
Division underU.S. Departmentof Energy ContractNo. DE-
AC03-76SF00098.This is report no. LBNL-48556. See
disclaimer at http://www-library.Ibl.gov/disclaimer.

References

[1] UylessBlack, Network managemergtandardsSNMRE CMIP,
TMN, MIBs, and object libraries. New York: McGraw- Hill,
€1995.

[2] R.L. Carterand M.E.Crovella, “Measuring Bottleneck Link
Speedin Paclet-SwitchedNetworks, Performance Evaluation,
vol. 27,28, pp. 297-318,1996.

[3] Kevin Lai and Mary Baker. Measuring Bandwidth. In
Proceedings of IEEE INFOCOM, March 1999.

[4] Allen B. Downey, Using pathcharto estimatelnternetlink
characteristicproceeding®f SIGCOMM 1999,CambridgeMA,
September 1999, 241-250.

[5] Kevin Lai and Mary Baker, “Nettimer: A Tool for Measuring
Bottleneck Link Bandwidth”, Proceedingsof the USENIX
Symposium on InterneteEhnologies and Systems, March 2001.

[6] C. Dovrolis, P RamanathanD. Moore, What do paclet
dispersion techniques measure? In Proceedings of IEEE
INFOCOM, April, 2001.

[7]1 Thomas J. Hacler, Brian D. Athey, The End-to-End
Performance Effects of Parallel TCP Soclets on a Lossy
Wide-Area Netvork, Aug. 2001.

[8] G. Jin, G. Yang, B. Crowley, D. Agarwal, Network
CharacterizatiorService (NCS), HPDC-10 Symposium,August
2001

[9] Stefan Saroiu, SProbe: A Fast Technique for Measuring
BottleneckBandwidthin Uncooperatie Environments Available:
http://sprobe.cs.ashington.edu

[10] ManishJainandC. Dovrolis, Pathload:A MeasuremenTool
for End-to-end Aailable Bandwidth, ®M, March, 2002.

[11] Attila Pasztor’,Darryl Veitch, PC BasedPrecisionTiming
Without GPS, Sigmetrics, June 2002

[12] Attila Pasztor Darryl Veitch, Active Probing using Packet
Quartets, IMWNov. 2002

[13] Jin, Guojun, “Algorithms and Requirementdor Measuring
Network Bandwidth”, technical report LBNL-48330, 2003

[14] Deb Agarwal, José Maria Gonzéalez, Guojun Jin, Brian
Tiernegy, “An Infrastructurefor Passve Network Monitoring of
Application Data Streams” AM, April 2003

[15] Vinay Ribeiro,Rudolf Riedi, RichardBaraniuk Jiri Navaratil,
Les Cottrell, “pathChip: Efficient Available BandwidthEstimation
for Network Paths”, AM, April 2003

[16] G Jin, B Tierngy, “Netest: A Tool to Measurethe Maximum
Burst Size, Available Bandwidth and Achievable Throughput”,
ITRE, August 2003

[17] Justin (Gus) Hurwitz, Wu-chun Feng, “Initial End-to-End
Performancdvaluationof 10-Gigabit Ethernet”,Hot Interconnect
11, August 2003

[18] Ningning Hu, Peter Steenkiste, “Evaluation and
Characterizationof Available Bandwidth Probing Techniques”,
IEEE JSAC Speciallssuein Internetand WWW Measurement,
Mapping, and Modeling, 3rd Quart&003.

[19] ftp://ftp.arl.mil/publ/ticp
[20] http://dsd.Ibl.ge/NCS/back/emn.htmi#EMN_LAB
[21] http://dast.nlannet/Projects/Iperf

[22] Netperf: A Network PerformanceBenchmark.Available:
http://www.netperf.og/netperf/training/Netperf.html

[23] pchar: A Tool for MeasuringInternet Path Characteristics.
Available: http://wwwemplgees.og/~bmah/Softare/pchar

[24] http://mwwpsc.edu/neterking/treno_info.html
[25] http://dsd.Ibl.ge/SCNM/FreeBSD_mods.html

[26] http://lwww.caida.og/projects/bwest/presentations/mtgjun02/
L2effects.pdf

